Телескоп

главная     содержание

Конструкция телескопа

Телескоп – это оптическая система, которая, «выхватывая» из пространства небольшую область, зрительно приближая расположенные в ней объекты. Телескоп улавливает параллельные своей оптической оси лучи светового потока, собирает их в одну точку (фокус) и увеличивает при помощи линзы или, чаще, системы линз (окуляра), которая одновременно снова преобразует расходящиеся лучи света в параллельные. В результате этого мы можем с хорошими подробностями рассмотреть объекты, удаленные на значительное расстояние. При этом диаметр наблюдаемого пространства зависит от поля зрения окуляра.
По типу элемента, используемого для сбора световых лучей в фокусе, все современные потребительские телескопы подразделяются на линзовые (рефракторы), зеркальные (рефлекторы) и зеркально-линзовые (катадиоптрические). Возможности телескопов каждой группы несколько отличаются, поэтому, чтобы выбрать оптимальный для своих нужд оптический инструмент, начинающий астроном-любитель должен иметь некоторое представление о его устройстве.

Линзовые телескопы (рефракторы)

Вслед за своим созданным Галилеем прародителем, телескопы этой группы фокусируют свет при помощи одной или нескольких линз, вследствие чего называются линзовыми, или рефракторами.

Перед телескопами других систем рефракторы имеют целый ряд преимуществ. Так, закрытая труба телескопа предотвращает проникновение внутрь трубы пыли и влаги, которые оказывают негативное воздействие на полезные свойства телескопа. Кроме того, рефракторы просты в обслуживании и эксплуатации – положение их линз зафиксировано в заводских условиях, что избавляет пользователя от необходимости самостоятельно производить юстировку, то есть тонкую подстройку. Наконец, у линзовых телескопов отсутствует центральное экранирование, которое уменьшает количество поступающего света и ведет к искажению дифракционной картины. Рефракторы обеспечивают высокую контрастность и превосходное разрешение изображений при наблюдении планет. Однако есть у телескопов этой системы и минусы, основным из которых является эффект, известный как хроматическая аберрация. Он возникает вследствие того, что световые лучи разной длины имеют неодинаковую сходимость, то есть точки фокуса для разных составляющих спектра будут находиться на различном расстоянии от преломляющей линзы. Зрительно хроматическая аберрация проявляется как цветные ореолы вокруг ярких объектов. Для устранения этого дефекта должны использоваться дополнительные линзы и оптические элементы из особых видов стекла. А ведь конструкция рефракторов и сама по себе предполагает не менее двух линз, все четыре поверхности которых должны иметь хорошо выверенную кривизну, быть тщательно отполированы и покрыты как минимум одним просветляющим слоем. Другими словами, хороший рефрактор – устройство, достаточно сложное в производстве, а потому, как правило, весьма недешевое.

 Зеркальные телескопы (рефлекторы)

Телескопы другой большой группы собирают световой пучок при помощи зеркала, поэтому называются зеркальными телескопами, рефлекторами. Самая популярная конструкция зеркального телескопа называется по имени своего изобретателя, телескопом системы Ньютона.
Зеркало как элемент оптической системы рефлектора представляет собой вогнутую пластину стекла сферической или параболической формы, передняя поверхность которого покрыта отражающим материалом. В конструкции небольших рефлекторов и длиннофокусных телескопов с относительным отверстием f/9 или более нередко применяются зеркала сферической формы, однако для больших телескопов и моделей с диафрагменным числом ниже f/8 такое решение не подходит. Дело в том, что при использовании в подобных конструкциях сферических зеркал, свет, отражаемый их поверхностью, не сходится в одной точке, формируя в фокусе немного размытое пятно. В результате этого изображение теряет контраст, то есть возникает эффект, известный как сферическая аберрация. Предотвратить ухудшение качества изображения, помогают зеркала параболической формы.

Отражаемый сферическими зеркалами свет не сходится в одной точке, что приводит к ухудшению резкости

Параболоидные зеркала собирают все лучи в единую точку фокуса

Проникающий в телескоп свет попадает на зеркало, которое отражает лучи вверх. В точку фокуса свет отражается при помощи плоского вторичного зеркала эллиптической формы, укрепленного в центре трубы под углом 45 градусов. Разумеется, само вторичное зеркало в окуляр увидеть нельзя, однако оно является препятствием на пути светового потока и экранирует свет, что может изменять дифракционную картину и приводить к небольшой потере контрастности. Среди плюсов рефлекторов – отсутствие хроматизма, ведь лучи света в силу самой конструкции отражаются от стекла, а не проходят сквозь него. К тому же, по сравнению с рефракторами зеркальные телескопы менее дороги в производстве: в конструкции рефлектора присутствуют всего две нуждающиеся в полировке и специальных покрытиях поверхности. Среди минусов рефлекторов необходимо отметить большую длину трубы, делающую телескоп более уязвимым к колебаниям, например, вследствие воздействия ветра, а также сложное обслуживание, предполагающее регулярную юстировку каждого зеркала.

Зеркально-линзовые телескопы (катадиоптрические)

Третью группу современных телескопов составляют своеобразные гибриды – катадиоптрические телескопы, оптические системы которых комбинируют линзы и зеркала. Здесь представлены катадиоптрические телескопы системы Ньютона, телескопы Шмидта-Кассегрена и Максутова-Кассегрена.

Зеркально-линзовые телескопы системы Ньютона отличаются от классических представителей своего класса наличием на пути светового потока к точке фокуса корректирующей линзы, которая, при сохранении компактных размеров телескопа, позволяет добиваться большего увеличения. Например, при использовании корректирующей линзы с двукратным увеличением и физической длине системы 500 мм, фокусное расстояние составит 1000 мм. Подобные рефлекторы значительно легче и компактнее «нормальных» телескопов Ньютона того же фокусного расстояния, а, кроме того, просты в эксплуатации, легки в установке и менее подвержены воздействию ветра. Положение корректирующей линзы фиксируется в процессе производства, но зеркала, так же как и в случае с телескопом Ньютона стандартной конструкции, нуждаются в регулярной юстировке.

Оптические схемы телескопов Шмидта-Кассегрена включают тонкие асферические коррекционные пластинки, которые направляют свет на первичное вогнутое зеркало, обеспечивая исправление сферической аберрации. После этого световые лучи попадают на вторичное зеркало, которое, в свою очередь, отражает их вниз, направляя через отверстие в центре первичного зеркала. Непосредственно за первичным зеркалом находится окуляр или диагональное зеркало. Фокусировка производится посредством перемещения первичного зеркала или окуляра. Главным достоинством телескопов подобной конструкции является сочетание портативности и большого фокусного расстояния. Основной минус телескопов Шмидта-Кассегрена – сравнительно большое вторичное зеркало, которое сокращает количество света и может вызывать некоторую потерю контрастности.

Телескопы системы Максутова-Кассегрена имеют схожую конструкцию. Так же, как системы Шмидта-Кассегрена, эти модели исправляют сферическую аберрацию при помощи корректора, в качестве которого, вместо пластинки Шмидта, используется толстая выпукло-вогнутая линза (мениск). Проходя через вогнутую сторону мениска, свет попадает на первичное зеркало, которое отражает его вверх на вторичное зеркало (как правило, покрытую зеркальным слоем область на выпуклой стороне мениска). Дальше, так же, как и в конструкции Шмидта-Кассегрена, лучи света проходят через отверстие в первичном зеркале и попадают в окуляр. Телескопы системы Максутова-Кассегрена менее сложны в производстве, чем модели Шмидта-Кассегрена, однако использование в оптической схеме толстого мениска увеличивает их вес.

главная     содержание